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Abstract: The highly stercoselective a(1-->4) coupling between two D-galacturonic acid ester 
derivetives was accomplished in good yields, for the first time. using a phenylthioglycoside as donor. 
The method was designed to prepsre D-galacturonic acid oHgomers with methyl ester groups in 
definite positions. Copyright © 1996 Published by Elsevier Science Ltd 

Pectin, a constituent of plants ceil-walls, consists mainly of partially methyl esterified linear a(1--->4) 

linked oligogalacturonic acids and can be degraded by phytopathogenic fungi or bacteria. In view of our 

continuing interest in pecfinases in phytopathogenic Erwinia chrysanthemi 1 we recently turned our attention to the 

design and synthesis of potential inhibitors of these enzymes. To pursue this aim, we needed information about 

the importance of free acid versus methyl ester functions in the substrates for recognition by the enzymes, an 

issue which has not yet been clarified. Thus oligomers bearing methyl esters in definite positions were required. 
An obvious approach to our target compounds was the a(1-*4)-glycosylation between two suitably 

protected and differently esterified galacturonic esters. Some years ago, however, Nakahara et al. 2 reported that, 

using Mukaiyama conditions 3, attempted glycosylation between two methyl esters of D-galacturonic acid gave no 

yield of expected dirner. This failure was attributed to the low reactivity of both the donor and acceptor due to the 

electron-withdrawing effect of the earboxylie function. Under the same conditions, the glycosylation between a 

galactose derivative as donor and a methyl galacturonate as acceptor led to the disaccharide in only 42o  yield. 4 

These authors then circumvented this problem by performing the glycosylation between two D-galactose units and 

oxidizing afterwards, in two steps, simultaneously all the primary 6-OH functions into acids. They thus 

developed an efficient synthesis of D-galacturonic acid oligomers. 5 However this approach was not very 

convenient for our purpose since it would require extensive protecting group manipulations to differentiate the 

two 6-OH functions allowing their selective transformations into either carboxylic acid or methyl ester. 

More recently, from D-galacturonic derivatives as aceeptors and donors, using the trityl-cyanoethylidene 
condensation method 6, Vogel et al. reported the selective preparation of 13(1 --}2) and 13(1 -*3) linked disaccharides 

in reasonable yields 7 as well as 13(1-.3) oligomers of protected methyl D-galacturonate. 8 However, the same 

conditions applied to the synthesis of (1--,4) dimers led to a mixture containing a small amount of the a linked 
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stereoiscraer together with anomeric epimers (due to a partial epimerisstion of the glycosyl acceptor) of 13 linked 

compounds, in 45% overall yield. ? 

Since they are sufficiently stable to withstand protecting group manipulaticc= and can readily be activated, 

1-thioglycosides have been known for a long time to be valuable donors in glycosidic bond formation and have 

recently been exploited in efficient preparations of oligossccharides. 9 If  some examples of glycosylation using 

thioglycosides of glucuronic acid as donors are known 10, to our knowledge, the same reaction has not yet been 

reported for their 8alacturonic analogs. We therefore decided to examine the glycosylation between phenyl- 1- 

thioglycosyl derivatives l l  of D-galacturonic esters as donors and 4-hydroxyl unprotected D-galacturonic esters as 

accepters. We report hem our prefiminary results. 12 

The properly protected glycosyl acceptors 2 and 3, and donors 5 and 6, were prepared as depicted in 

scheme I. From the sodium salt of the known 13 acid I we obtained the corresponding methyl 13 or benzyl esters 

2 and 3. The direct oxidation of the known 14 phenylthiogiycoside 4 into tert-butyl ester 5 was performed using 

the modified 10b Corey and coll. conditions. 15 The corresponding methyl ester 6 was obtained from $ in two 

steps. 
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a) NaHCO 3 sat., Aliquat 336, CHzC12, MeI (60~) or BrBa (6,5~). b) PDC, ~rt-BuOH, Ac20 (70%). 
c) CF3CO2H, CH2CI2. d) CHzN2 (68~ from 5). 

Scheme 1 

Having prepared the designed glycosyl donors and acceptors we then turned to the pivotal glycosidation 

step. Results are summarized in Table (entries 1 and 2). Using N-iodosuccinimide-trifluoromethanesulfonic acid 

as promoter 16, the thioglysoside donor 6 reacted smoothly, at low temperature, with the glycosyl acceptor 3 to 

give very stereoselectively the a(1~4) linked product l l a  (scheme 3) in very good yield.17,18 The coupling 

between donor $ and acceptor 2 was achieved under the same conditions, however somewhat less efficiently, 

and furnished exclusively the dimer 12cc. We thus obtained the precursors of the two mono-methylated D- 

galacturonic acid dimers and, in view of these encouraging results, we next envisaged the preparation of a trimer. 
For that purpose the 4'-O-p-methoxybenzyl (PMB) protected dimer 13a was prepared (table, entry 3) from the 

c0n'eslxmding glycosyl donor 9, obtained in five steps from 7 (scheme 2), and acceptor 3. 

? 8 

a) HCI IN, ace~ne, b) TrCI. Pyr., DMAP. 1 
c) NaI-I, PMBCI. d) MeOH, Dowex H + f) g) 
(76~ from ?). e) PDC, tert-BuOH, Ac20 (70~). 
f) PDC, DMF. g) NaHCO 3 sat., Aliquat 336. 
CH2CI2, BoBr (33~ from 8). 
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The selective deprotection of the 4'-OH (Dichlorodicyanoquinone/CH2Cl2/H20; 75%) in 13a led to the 

dimedc giycceyl acceptor 14o.. Unfortunately, under the coupling conditions used above, even when the reaction 

temperature was raised up to 20°C, the giycosylation did not take place. We hypothesized that the lower reactivity 
of the 4'-hydroxyl group in 14a was due to the bulkiness of the ten-butyl group. Therefore, from donor 10 and 

acceptof 3, we then pt'vpared the dimer l$a  (table, entry 4) bearing now a st~cally less hindering benzyl ester. 

After selective release of the PMB protecting group (86%) the dimeric acceptor 16a thus obtained was exposed 

to the giycosyl donor 2. T.l.c. examination of the reaction mixture showed that the giycosyiation lxoceeded very 

slowly at -60°C. Therefore the temperature was raised to -10°C. Using a twofold excess of donor we finally 

obtained the expected Irimer 17 (table, entry 5) in 45 % yield along with recovered acceptor (50%). 

Table: Results of Giycosylation Reactions 

entry donor acceptor romp (°C) time (h) product yield (%) caf~ ratio 

1 6 3 -60 2.5 I 1 91 95/5 

2 $ 2 -60 2 12 70 >95/5 a 

3 9 3 -60 1 1 3 70 >95/5 a 

4 10 3 -60 1.4 15 78 >95/5 a 

5 2 16a -10 4 17 45 (90) b 95/5 c 

a) [3 anomer not detectable in the 1H-NMR spectrum of the crude product, b) based on recovered 

acceptor, c) determined on the 1H-NMR spectrum of the crude product. 
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Scheme 3 

In conclusion we describe here, for the first time, to our knowledge, the stereoselective a(1-->4) 

giycosylation between two D-galacturonic acid ester derivatives giving rise to disaccharides in good yields. This 

approach was designed as a means for obtaining either free acid or methyl ester groups in definite position in the 

delxotected final compounds. The method seems to be suitable for the further preparation of D-galacturonic acid 

oligomers methyl esterified in definite positions, since we were able to obtain, though in modest yield, a trimer. A 

more detailed investigation of the importance of the nature of both the thiogiycoside and of the activating agents 9 

on the yield and selectivity of giycosylation is under investigation. 
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